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Abstract

Orthogonal Distance Regresson (ODR) is the name given to the com-

putational problem associated with finding the mciximum likelihood esti-

mators of parameters in measurement error models in the case of normally

distributed errors. We examine the stable and efficient algorithm of Boggs,

Byrd and Schnabel {SIAM J. Sci. Stat. Comput., 8 (1987), pp. 1052-

1078) for finding the solution of this problem when the underlying model

is assumed to be nonlinear in both the independent variable and the pa-

rameters. We also describe the associated public domain software package,

ODRPACK. We then review the results of a simulation study that compares

ODR with ordinary least squares (OLS). We also present the new results

of an extension to this study. Finally we discuss the use of the asymptotic

covariance matrix for computing confidence regions and intervals for the es-

timated parameters. Our conclusions are that ODR is better than OLS for

the criteria considered, and that ODRPACK can provide effective solutions

and useful statistical information for nonlinear ODR problems.

1. Introduction

Much has been written about measurement error models and their properties.

The definitive modern treatment of such problems, which are also known as er-

rors in variables and generalized least squares, is given by Fuller [14]. Because
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Introduction 2

of the complexity of these problems, most of the work in this area has concerned

linear models. In this paper, however, we are primarily concerned with nonlinear

measurement error models and the stable and efficient algorithm of Boggs, Byrd

and Schnabel [5] for the numerical solution of the resulting nonlinear optimization

problem that we refer to as the orthogonal distance regression problem. We also

discuss the implementation of this algorithm in the software library ODRPACK
and the use of this software to perform certain simulation studies that help to

illuminate the differences between using an orthogonal distance criterion for es-

timating the parameters of a model and the use of the standard ordinary least

squares (OLS) criterion. (See Boggs et al. [8], and Boggs, Donaldson and Schn-

abel [7].) We conclude with another simulation study (Boggs and Donaldson [6])

designed to test the effectiveness of the confidence intervals and regions obtained

from the asymptotic covariance matrix.

The measurement error model can be defined in a number of ways. Here we

assume that

( ^ l,...,n,

are observed random variables with underlying true values

(^n yi'jt ^ — 1, . . . ,
n,

where x, E 3?”^ and yi G 3?. We also assume that 6,- is the random error associated

with X,, that e,- is the random error associated with y,-, and that

Xi = Xi — Si

Yi — yi — Cj.

Finally, we assume that yi is given as a function of x,- and a set of parameters

(3 G i.e.,

Vi
=

or

(Throughout this paper, we use bold face to denote the matrix or column vec-

tor whose components are the corresponding subscripted variables, e.g., f3
=

(/3i, /?2 , . .
. ,

/dp)^ where ' means transpose.) The function / may be either linear

or nonlinear in its arguments, but must be a smooth function of these arguments.

At this point, we make no restrictions on the distribution of x, i.e., we do not

specify either a functional or structural model.
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Any procedure that estimates /3 for a measurement error model should take

into account that both Xi and Yi have error. We do this by using an orthogonal

distance to define the distance from the point {Xi,Yi) to the curve /(x;/3),

where " denotes a non-distinguished value of the variable. That is, we take

rf = mm{ej + 6f}
it,Si

subject to: Yi = f{Xi + — ei, z = 1, . .
. ,

n.

Note that here, and in the following derivation, we assume that Xi is one dimen-

sional to simplify the notation.

Under the assumptions that Cj- ~ N{0,cr^J and 6i ~ A^(0,(7U, it follows that

the maximum likelihood estimate ^ is that which minimizes the sum of the squares

of the r,-. Thus /3 is the solution of

n

min +
p,o,e i=i

(1.1)

subject to: Yi = f{Xi -1- 6,-; 3) - e,, z = 1, .

.

. ,n. (1.2)

Since the constraints (1.2) can be used to eliminate e from (1.1), this constrained

problem is equivalent to the unconstrained minimization problem

min
t=l ^ ^

The final form of the optimization problem is obtained by allowing weights

to be associated with the observations. We thus define the weighted Orthogonal

Distance Regression Problem (ODR) to be

min f2<v^\[f(X, + S,;h-y.f +dfsh
t=l ^

(1.3)

where Wi > 0 and d,- > 0. The problem in this form can arise in statistical

applications, and in curve fitting and other applications where the errors and

their associated weights have no statistical connotation. In the remainder of this

paper, however, we deal with problems where Wi = and di = cr^Jcrs,-

In §2 we discuss the stable and efficient numerical algorithm in Boggs, Byrd

and Schnabel [5] for solving this problem. This algorithm requires the same work
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per iteration as the corresponding procedure for solving an OLS problem. The
algorithm has been implemented in a Fortran subroutine library called ODRPACK
(Boggs et al. [3]) that is publically available. The features of this package are also

discussed.

In §3 we review the results of a simulation study (Boggs et al. [8]) that

was designed to examine the differences between ODR and OLS solutions. This

“baseline” study assumes that the ratios d,- = are known and constant,

and Wi = 1 for all i. Under the chosen criteria ODR is shown to be superior to

OLS. We then describe an extended study (Boggs, Donaldson and Schnabel [7])

that relaxes the assumption that the d,- are known exactly. In this case, if the

ratios are known to within a factor of 10, ODR is still preferred.

Fuller [14] shows how to derive the asymptotic covariance matrix for the ODR
problem. In §4 we discuss the results of a further simulation study (Boggs and

Donaldson [6]) designed to ascertain the effectiveness of confidence regions and

intervals constructed based on this matrix.

The results reported here allow the conclusion that ODR is preferred over

OLS when the ratios d, are reasonably well known. Furthermore, the existence of

the algorithm and software described in §2 means that solving an ODR problem

is just as easy as solving a nonlinear OLS problem, and that useful statistical

information can be readily produced.

2. Algorithm and Software

The ODR problem (1.3) has been in the computing literature for several years,

and several procedures for its solution have been proposed, cf., Britt and Luecke

[9], Powell and MacDonald [15], Schnell [18], and Schwetlick and Tiller [19]. In

this section, we review the recent stable and efficient algorithm of Boggs, Byrd

and Schnabel [5], and its implementation in ODRPACK. (See Boggs et al. [3] and

[4].) The algorithm is based on a trust-region strategy that yields a Levenberg-

Marquardt type step. (See, e.g., Dennis and Schnabel [10].) The trust-region

approach allows for a much more effective procedure for computing the so-called

Levenberg-Marquardt parameter.

To describe the algorithm we again assume that .Y, is one dimensional, which

keeps the notation simpler. (The extension to m dimensions is straightforward,

and ODRPACK allows this.) We first show that (1.3) can be viewed as an ex-

tended OLS problem. We then review the trust-region approach for solving non-

linear OLS problems, and show how the special structure of the extended problem
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can be exploited to produce an efficient scheme. In fact the efficiency is compara-

ble to that of a trust-region algorithm for solving the OLS problem obtained from

the assumption that there are no errors in We conclude this section with a

brief description of ODRPACK.
Let

Wi

9i+n{^i — WidiSi

i = 1 , . .
. ,
n

z =

and denote the 2-norm of g by

Then (1.3) becomes

2n

i=\

mm
2n

(3,6 ,=i

which is an OLS problem with n -f p parameters and 2n observations.

Let

I)d =

and denote by J G 3?2nx(n-f-p) Jacobian of

gi^) =
• ,gi0)2n)\

'' 06/
Then the linearized model at the current iterate, given by the first two terms

of the Taylor series, is

g{0^)^J{0^)s=g^ + J‘^s (2.1)

where

s = 0-0\

(2.1) can then be used to compute a step, 5“^, from which the next iterate, 0'^, is

found, i.e., 0^ = 0^^ s^. The obvious step that could be calculated from (2.1)
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is the so-called Gauss-Newton step where is simply the (linear least squares)

solution of

min 11^" -h J^sf .

if

But even when the length of this step is controlled, e.g., by a line search, the

resulting algorithm has not proven itself to be competetive with other procedures.

(See, e.g., Dennis and Schnabel [10].) If, however, we explicitly recognize that the

length of the step must be controlled by the extent to which (2.1) is a good

model of flr, then a much better procedure arises.

Specifically, the trust-region algorithm chooses the current step as the solu-

tion to

minslli^'^d-
.2.2)

subject to: ||s|l < r ;

where r is the trust-region radius. The value of r defines the region where (2.1) is

a good model of g and should not be thought of in a statistical sense. The value

of r is automatically adjusted at each iteration based on whether \[g{9^ + 5^)11 <

llflr‘^11 and on a comparison of ||gr(0‘^ -|- s^)|| with -f The actual tests

employed in modern trust-region algorithms have been empirically determined

over the years. (See Dennis and Schnabel [10] for a general discussion, and Boggs,

Byrd and Schnabel [5] and Boggs et al. [3] for specific details.)

An outline of the trust-region algorithm is as follows.

Given an initial approximation 0^ and an estimate of the trust-region, r:

1. Solve (2.2) for 5“^

2. Set 0+ := + s"

3. Test: If g{9'^) < then

• set 0^^ := 0^

• adjust r if necessary

• check convergence

else

• reduce r

4.

Go to Step 1
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In the construction of portable software that is meant to be used for a variety

of problems, it is common to solve (2.2) by first doing a QR factorization of the

Jacobian matrix J

.

(See, e.g., Dennis and Schnabel [10] or Stewart [20].) For a

dense n x p matrix the QR factorization requires 0{np^) operations. Since J is

2n X (n + p), it therefore requires 0{n{n + p)^) = 0{n^) operations to compute

its QR factorization. The matrix J has a special structure, however, that can be

exploited to solve (2.2) more efficiently. In particular, let denote the first n

components of g and g 2 the last n components. Then

where

and

J =

/ 22±
d$ dS

dfJo dg,

\ d$ d6 J

/ % iT \
dp

\ 0 D )

rr .. f ,H = diag
I

Wi ^ = 1, . .
. ,
n

D = diag {wid,, i = 1, . .
.
,n} . (2.3)

By exploiting the structure provided by the existence of the zero block and the two

diagonal blocks, H and T), the amount of work per iteration required to solve an

ODR problem can be reduced from O(n^) to 0{np^) operations plus, on average,

less than two evaluations of the model function /. Since there are typically many
more observations than parameters, this difference can have a profound influence

on the size of problem that can be practicably solved. We point out that if the

errors in A", are ignored and the resulting OLS problem is solved, the amount of

work per iteration required is also 0{np^) operations plus an average of less than

two evaluations of /. Using our algorithm, therefore, an ODR problem can be

solved as efficiently as an OLS problem. See Boggs et al. [3] for the details.

We conclude this section with a brief description of the Fortran subroutine

library, ODRPACK, that we have written to implement the ODR algorithm de-

scribed above. A complete description is contained in Boggs et al. ([3] and [4]).

The package is portable and has been successfully run on many machines from

PCs to supercomputers.
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ODRPACK is designed to solve both OLS and ODR problems, handling many
levels of user sophistication and problem difficulty.

• It is easy to use, providing two levels of user control of the computations,

extensive error handling facilities, optional printed reports summarizing the

iterations and/or the final results, and no size restrictions other than effective

machine size.

• The necessary Jacobian matrices are approximated numerically if they are

not supplied by the user. The correctness of user supplied derivatives can

also be verified by the derivative checking procedure provided.

• Both weighted and unweighted analysis can be performed. Unequal weights

ty,, i = 1, . .
.

,

n, are allowed, and a different value of i — 1, . .
. ,
n and

k — 1, . .
.

,

m, can be specified for each component of X. A feature has also

been incorporated that allows the same weight to apply to many components

without having to explicitly enter it more than once.

• Subsets of the unknowns can be treated as constants with their values held

fixed at their input values, allowing the user to examine the results obtained

by estimating subsets of the unknowns of a general model without rewriting

the code that computes /.

• The covariance matrix and the standard errors for the model parameter

estimators are optionally provided. (See §4.)

• ODRPACK automatically compensates for problems in which the model

parameters and/or unknown errors in the independent variables vary widely

in magnitude.

A copy of ODRPACK may be obtained free of charge from the authors.

3. Simulation Studies

Researchers including Fuller [14] and Reilman tt al. [17] provide results that give

theoretical conditions for choosing ODR over OLS and vice versa. These results,

however, are only for straight line models, and, to our knowledge, there are no

similar results for either general linear models or for nonlinear models. This state

of affairs provides the motivation for a baseline simulation study that compares the
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performance of ODR and OLS on nonlinear models. These results are contained

in Boggs et al. [8].

The central assumption in Boggs et al. [8] is that the ratios

di = (T,Jas,

are known exactly. We first review this study, and then present results that extend

this work to the case when the d, are not known exactly.

The existence of ODRPACK as described in §2 not only makes these studies

possible, but also makes them of practical interest. Since this code is publically

available, other researchers and practitioners can solve their own ODR problems

and conduct similar simulation studies on other models.

The study in Boggs et al. [8] is the first to consider models that are nonlinear

in both (3 and a:, although studies involving linear and quadratic models have

been reported in Amemiya and Fuller [1], Schnell [18], and Wolter and Fuller [21],

for example. Our procedure is to compare the bias, variance, and mean square

error of parameter estimates and function estimates obtained using both ODR
and OLS. We use four forms of the model function / with two parameter sets per

function. We generate errors for each using d, = d* for seven values of d* ranging

from 0.1 to oo, replicating each problem configuration 500 times. Each of the

resulting 91,000 problems is then solved using ODR and OLS. (Recall that the

correct values of d, are used to obtain the ODR solutions.) Both the ODR and

OLS computations are done by ODRPACK.
To be more specific, we consider a straight line model, a quadratic model, an

exponential model, and a sine model. The two true parameter sets for each of

these models are chosen so that the maximum slope of / over the range of the X
data is 1 and 10, respectively. The x,- are taken as 51 equally spaced points on

[-1,1]; thus this study is concerned with a functional model. The errors 6 and e

are generated as normally distributed and adjusted so that the expected sum of

the squared errors is constant over the seven values of d*

.

The values of d* that

we consider are 0.1, 0.5, 1.0, 2.0, 10.0, 100.0, and oo, where d* = oo indicates that

there are no errors in the values Xi.

The main conclusion of this study is that ODR is better than OLS for all of

the criteria that we consider.

• For parameter bias, ODR is no worse than OLS in 98% of the cases studied

and is a clear winner 50% of the time.

• For parameter variance and mean square error, ODR is no worse in 98% of

the cases and is appreciably better in 23%.
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• Similar results are obtained for the function estimates.

• For the straight line model, we do not see a preference for OLS over ODR, as

is predicted by Reilman et al. [17]. ODR produces a significantly lower bias

than OLS, but the variance and mean square error values are only slightly

smaller for OLS. We thus conclude that ODR is still preferable in this case.

• In accordance with the observations of Wolter and Fuller [21] and Anderson

[2] our computational results do not reflect the infinite moments of ODR.

In practice, the ratios di are seldom known exactly. Thus it is of interest to

extend the above results to the case where an approximate value of each d, is used

in the ODR procedure. The results of such a study are presented next.

To make this second Monte Carlo study tractable, we reduce its scope some-

what. We consider the same seven functions as described above, but with only

one parameter set per function. For this study, the ratios used to compute the

generated errors are d* equal to 0.1, 1.0, and 10.0, and the values of the error

ratios that are used by ODRPACK in estimating the parameters are d, = jd*,

where 7 has the values 0.1, 0.5, 1.0, 2.0 and 10. That is, we investigate cases where

the error ratio used in the estimation procedure is correct to within a factor of

10. We again compare the ODR results to an OLS flt using the same criteria as

in the baseline study reported above.

We give a complete description of the study and the results in Boggs, Donald-

son and Schnabel [7]. In summary, when the d, are correct to within a factor of

10.0, then:

t The bias of the parameter estimates using ODR is no worse than the bias

using OLS in 88% of the cases studied, and is significantly smaller 59% of

the time.

• The variance of the parameter estimates using ODR is no worse in 90% of

the cases and is smaller in 40%.

• The mean square error of the parameter estimates using ODR is no worse

in 87% of the cases and is smaller in 50%.

Similar results are observed for the function estimates. In addition, there appears

to be some support for overestimating rather than underestimating the d,.

We conclude from these two studies that if the d, are known to within a factor

of 10, then ODR is preferable to OLS. In the next section, however, we describe
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how estimated confidence regions may break down if the d,- are not known to

within a factor of 2.

4. The Asymptotic Covariance Matrix

In many parameter estimation problems, confidence regions and/or confidence

intervals for the estimated parameters are needed. In the linear OLS case, these

can be obtained exactly. In the nonlinear OLS case and in ODR, the computation

of exact confidence regions and intervals is computationally intractable, and so

approximate methods must be used.

Fuller [14] derives the asymptotic form of the covariance matrix for the esti-

mated parameters of measurement error models. This can be used to construct

approximate confidence regions and intervals. In Boggs and Donaldson [6] we

discuss the efficient computation of this covariance matrix in the context of the

algorithm and software of §2. Using a Monte Carlo simulation study, we then as-

sess the quality of confidence regions and intervals computed from this covariance

matrix. In this section we review that work.

The asymptotic covariance matrix can be defined using the extended OLS
problem of §2, namely,

2n

(4.1)

0 ^=l

and the corresponding Jacobian matrix J 6 with (f, j) element defined

by

j -^
''

de,

'

Let 0 be the estimate of 0 from (4.1) and let

where

3 _ gi0yOg{0)

n p

n = ( 0 \

0 D' j
’

w = diag {wi, z = l,...,n}
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and D is given by (2.3). Also, assume that O correctly reflects the distribution

of the errors e and 6 as specified in §1. Then the covariance matrix is

V = [J'OJ]~^

,

which Fuller [14] proves is asymptotically correct as the error variance tends to

zero.

The matrix V can be used to construct approximate confidence regions and

intervals for the estimated parameters 0. We call this method the linearization

method since it is based on the assumption that g is adequately approximated by

a linear function of the form (2.1) in the neighborhood of 0, The goodness of the

resulting linearized regions and linearized intervals depends on the nonlinearity of

/ and the size of . Donaldson and Schnabel [11] show that the linearized con-

fidence intervals for nonlinear OLS problems appear to be reasonable in practice,

but that the linearized confidence regions can be inadequate. (More accurate, but

comensurately more expensive approximations can be obtained, as described by,

e.g., Donaldson and Schnabel [11] and Efron [13].)

To assess linearized confidence regions and intervals in the context of ODR
problems, we conduct a Monte Carlo simulation similar to that in Donaldson

and Schnabel [11]. Our study consists of four example problems. Three of these

problems exist in the literature. They are Fuller [14, Example 3.2.2], Ratkowsky

[16, Example 6.11], and Draper and Smith [12, Chapter 10, Problem E]. The

fourth example is taken from a consulting session involving a “psychophysical”

experiment evaluating the ability of human subjects to perceive a visual signal as

a function of the intensity of the signal.

For each example we generate 500 sets of “observed” data with normal random

error and true error ratios d*. We then solve each of the resulting problems using

ODRPACK. As in the second study reported in §3, this study also solves each

problem using a range of assumed error ratios d, = 7^*, where 7 = 0.1, 0.5, 1.0,

2.0, and 10.0. For each of the 500 data sets, we also construct the 95% confidence

regions and intervals for the estimate 0 using the linearization method. Finally,

we calculate the observed coverage, which is the percentage of cases in which the

true value is actually contained in the computed region or interval. Our results,

presented in Boggs and Donaldson [6], are summarized as follows:

• When the di are correct, we obtain surprisingly good estimates of the con-

fidence regions and intervals as compared to the results of Donaldson and

Schnabel [11], who often found the observed coverage for a nominal 95%
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confidence region to be less than 80%. We assume that this is due to our

choice of examples and is not a general property of ODR.

• The confidence region estimates significantly degrade, even when the esti-

mated values of d,- are off by no more than a factor of 2.

• The confidence intervals when the d, are correct are also quite good and

remain good when the d, are only off by a factor of 2.

• The confidence intervals significantly degrade when the d, are off by a factor

of 10.

• Confidence regions and intervals are better for ^ than for 6.

• In the case of confidence intervals for (3, overestimation of the d, is preferable

to underestimation. For 6 the reverse is true. This occurs because, as the d,

are increased, 6 becomes more restricted, whereas as the d, are decreased,

an artifically small value of a is produced.

Note that V is the covariance matrix for the entire parameter vector 0. In

practice, however, one is typically only interested in the covariance matrix for the

model parameters $. This is the upper left p x p part of V

,

which we denote

Vp. Just as the special structure of J allows us to create a fast algorithm for

solving (2.2), that same structure permits us to equip ODRPACK with an efficient

and stable means of calculating Vp. The formulas are contained in Boggs and

Donaldson [6] and are based on the work in Boggs, Byrd and Schnabel [5].

The overall conclusion from this third study is that the linearized confidence

regions and especially confidence intervals have some validity for ODR problems

when the d,- are known to within a factor of 2. Furthermore, the computations

needed to obtain these linearized regions and intervals for /3 are cheap, and are

automatically produced by ODRPACK. Thus we advocate the use of linearized

confidence regions and intervals for measurement error models in the same spirit,

and with the same caveats, that accompany their use in nonlinear OLS problems.
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